Durasheet™
Fibre Cement

Build it better with BGC

BGC Fibre Cement and Plasterboard is a proudly Australian based company that produces fibre cement and plasterboard products for Australia and for export.

BGC is one of Australia’s largest builders of houses and commercial buildings in addition to being a manufacturer of building products other than plasterboard and fibre cement such as insulation, windows, bricks, roof tiles, steel fabrication, insulated wall panels, plumbing materials and metal roofing. We also have a construction material division producing concrete, cement and asphalt in addition to owning several quarries.

BGC’s Fibre Cement and Plasterboard division prides itself on being innovative and environmentally focused. Both factories are located in Perth and there are BGC distribution centres across Australia and New Zealand.

BGC has shown leadership in the Australian market by being one of the first manufacturers to obtain GECA certification on the majority of their plasterboard products. We are very proud of the fact that our board meets GECA’s requirements by using up to 15% recycled gypsum and 100% recycled paper for the front and back of our plasterboard. We are an active participant in environmental reporting through Energy Efficiency, Waterwise and Emissions reporting programs to keep our environment safe.

The recently released Innova range of fibre cement flooring and façade systems has proven to be a huge success. We have used innovation to ensure these products and systems are lighter and easier to install than our competitors, another example of BGC’s commitment to market leadership.

At BGC we have a team of technical experts who can assist with specifications and design solutions for even the most challenging of projects.

Our mission at BGC is simple "Build it Better with BGC".
BGC Durasheet™ is designed for the cladding of gable ends, eaves, soffits, car ports and verandah linings of timber and steel framed buildings.

4.5mm thickness is generally used in timber framed residential buildings for soffit / eaves linings and the cladding of features such as gable ends. 6.0mm thickness is recommended for light commercial applications, cyclonic wind zones and steel framed constructions.

Durasheet™

- Available in two thicknesses to suit both residential and light commercial applications
- General purpose sheet
- 6.0mm suitable for cyclonic wind zones
- Classified as Type A Category 2 for exterior use
- Can be used on timber and steel framed buildings
Product Description

BGC Durasheet™ is a general-purpose fibre cement sheet for exterior applications. It is recommended for the cladding of gable ends, eaves, carport and verandah linings of timber or steel framed buildings.

Durasheet™ is a smooth flat square edged sheet and is manufactured in nominal thickness of 4.5 mm and 6.0 mm. 4.5 mm Durasheet™ is generally used in timber framed residential buildings for soffit linings and the cladding of features such as gable ends.

6.0 mm Durasheet™ is recommended for commercial applications, cyclonic wind zones and steel framed construction.

Accessories

BGC Fibre Cement can supply standard joint moulds for use with Durasheet™ as well as a new and contemporary joint mould.

Durasheet Smartline gives Durasheet a different look and feel with a more designer appearance. See your local BGC Fibre Cement office for a sample of this new joint mould.

Product Information

Durasheet™ is manufactured from Portland cement, finely ground silica, cellulose fibres and water. It is cured in a high-pressure steam autoclave to create a durable, dimensionally stable product.

Durasheet™ fibre cement sheets are manufactured to conform to the requirements of AS2908.2 Cellulose-Cement Products and are classified as Type A Category 2 sheet for external use.

Mass

The approximate weight of Durasheet™ at equilibrium moisture content (7% moisture) is as tabulated.

<table>
<thead>
<tr>
<th>NOMINAL THICKNESS (mm)</th>
<th>APPROX. WEIGHT (KG/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>7.1</td>
</tr>
<tr>
<td>6.0</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Fire Resistance

Durasheet™ has been tested by the CSIRO – Building, Construction and Engineering Division, in accordance to Australian Standard AS1530.3. See report numbers FNE 6966 and FNE 7529.

This report deemed the following Early Fire Hazard Properties:

- Ignition Index 0
- Spread of Flame Index 0
- Heat Evolved Index 0
- Smoke Developed Index 0-1

Mass

The approximate weight of Durasheet™ at equilibrium moisture content (7% moisture) is as tabulated.

<table>
<thead>
<tr>
<th>NOMINAL THICKNESS (mm)</th>
<th>APPROX. WEIGHT (KG/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>7.1</td>
</tr>
<tr>
<td>6.0</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Quality Systems

Handling & Storage

Durasheet™ must be stacked flat, up off the ground and supported on level equally spaced (max 450mm) gluts.

The sheets must be kept dry, preferably by being stored inside a building. When stored outdoors they must be protected from the weather.

Care should be taken to avoid damage to the ends, edges and surfaces.

Sheets must be dry prior to being fixed, or painted. Sheets must be carried on edge.
Avoid Dust Inhalation

BGC Durasheet™ as manufactured will not release airborne dust, but during drilling, cutting and sanding operations cellulose fibres, silica and calcium silicate dust may be released. Breathing in fine silica dust is hazardous, prolonged exposure (usually over several years) may cause bronchitis, silicosis or cancer.

When cutting sheets, use the methods recommended in this literature to minimise dust generation. These precautions are not necessary when stacking, unloading or handling fibre cement products. For further information or a Material Safety Data Sheet contact any BGC Sales Office.

Sheet Sizes

<table>
<thead>
<tr>
<th>THICKNESS (mm)</th>
<th>LENGTH (mm)</th>
<th>WIDTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>450</td>
<td>600</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>2700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td></td>
</tr>
</tbody>
</table>

Sheet Cutting & Drilling

Durasheet™ may be cut to size on site. If using power tools for cutting, drilling or sanding they must be fitted with appropriate dust collection devices or alternatively an approved (P1 or P2) dust mask and safety glasses should be worn. It is recommended that work always be carried out in a well-ventilated location.

The most suitable cutting methods are:

- **Score and Snap**
 Score the sheet face 4 or 5 times with a ‘score and snap’ knife. Support the scored edge and snap the sheet upward for a clean break.

- **Durablade**
 180mm diameter. This unique cutting blade is ideal for cutting fibre cement. It can be fitted to a 185mm circular saw.

- **Notching**
 Notches can be made by cutting the two sides of the notch. Score along the back edge then snap upwards to remove the notch.

- **Drilling**
 Use Tugsten Carbide drill bits. Do not use the drill’s hammer function. For small round holes, the use of a Tugsten Carbide hole-saw is recommended.

 For small rectangular or circular penetrations, drill a series of small holes around the perimeter of the cut out. Tap out the waste piece from the sheet face while supporting the underside of the opening to avoid damage. Clean rough edges with a rasp.

 Large rectangular openings are formed by deeply scoring the perimeter of the opening. Next, form a hole in the centre of the opening (refer method above) then saw cut from the hole to the corners of the opening. Snap out the four triangular segments. Clean rough edges with a rasp.

Fasteners

Timber Framing

Durasheet™ is to be fixed to timber using 30 x 2.8 mm galvanised flat head nails. Nails should be driven just flush with the sheet face. Do not overdrive nails.

30 x 2.8 mm Galvanised Flat Head Nail

When using nail guns, if variation occurs the gun should be set to under-drive and the nails tapped home using a hammer.

Lightweight Steel Framing

Use No.8 x 20 Galvanised wafer head screws for fixing 4.5 mm Durasheet™ eaves and soffit linings to lightweight steel framing. 4.5 mm Durasheet™ should not be used for cladding steel framed walls.

No. 8 x 20 mm Galvanised Wafer Head Screw

6.0 Durasheet™ claddings are fixed to lightweight steel framing using No.8 x 20 Galvanised self-embedding head screws. Screws should be driven just flush with the sheet face. Do not overdrive screws. Self-embedding head screws must not be used with 4.5 mm Durasheet™.

No. 8 x 20 mm Galvanised Self Embedding Screw

Fixing Requirements

Sheets to be fixed along all sheet edges over studs on wall cladding applications. Fixings centres must not exceed 200 mm for wall cladding and 300 mm for soffit linings.

Do not place fixings closer than 12mm from sheet edges, or closer than 50mm from the sheet corners.

Do not overdrive fasteners.

The sheet must be held firmly against the framing when fixing to ensure breakout does not occur on the back.

Coastal Areas – The durability of galvanised nails and screws used for external cladding in coastal or similar corrosive environments can be as low as 10 years.

For this reason BGC recommends the use of stainless steel or class 4 fasteners within 1km of the coast or other large expanses of salt water.
Thermal Breaks

The BCA states: “The thermal performance of metal and timber framed wall is affected by conductive thermal bridging by the framing members and convective thermal bridging at gaps between the framing and any added bulk insulation. Metal framed walls are more prone to conductive thermal bridging than timber framed walls.

Because of the high thermal conductance of metal, a thermal break is needed when a metal framing member directly connect the external cladding to the internal lining or the internal environment. The purpose of the thermal break is to ensure that the thermal performance of the metal framed wall is comparable to that of a similarly timber framed wall.

A thermal break may be provided by materials such as timber battens, plastic strips or polystyrene insulation sheeting. The material used as a thermal break must separate the metal frame from the cladding and achieve the specified R-value.

The R-value of the thermal break is not included when calculating the Total R-value of the wall, if the thermal break is only applied to the metal frame, because the calculation is done for locations free of framing members”.

When using a thermal break it must consist of a material with an R-value of not less than 0.2 and is required when using Lightweight Steel framing.

In many instances Vapour Permeable Sarking can be used as a thermal Break but please check this with the sarking manufacturer.

For further information on thermal breaks contact your local BGC Fibre Cement office.

Sarking

In wall cladding applications the installation of a vapour permeable perforated sarking between Durasheet™ and the framing is recommended.

Under windy conditions the building’s internal pressure will generally be less than the external air pressure, this will tend to draw water through flashing and seals if sarking is not used.

Use of a reflective sarking will enhance the insulation properties of the cladding system.

Boxed Eaves: Maximum Bearer and Fastener Spacing

<table>
<thead>
<tr>
<th>MAXIMUM EAVES WIDTH (MM)</th>
<th>AS4055 WIND CLASSIFICATION</th>
<th>WITHIN 1200MM OF THE EXTERNAL BUILDING CORNERS</th>
<th>ELSEWHERE IN BUILDING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRIMMER SPACING</td>
<td>FASTENER SPACING</td>
</tr>
<tr>
<td>TO 600 MAXIMUM</td>
<td>N1</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>N3/C1</td>
<td>450</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>N4/C2</td>
<td>375</td>
<td>200</td>
</tr>
<tr>
<td>> 600 TO 1200 MAXIMUM</td>
<td>N1</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>550</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>N3/C1</td>
<td>450</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>N4/C2</td>
<td>375</td>
<td>200</td>
</tr>
</tbody>
</table>
Garage / Carport / Alfresco Linings

Typically, when lining a carport with Durasheet™, sheets are to be installed at right angles to the ceiling joists and/or battens using PVC sheetholders to support all sheet joints.

The ends of the sheets should be staggered with a maximum gap of 5.0 mm to facilitate the PVC sheetholder.

The sheets must be nailed at 300mm maximum centres along each ceiling joist / batten.

The outer sides and ends of perimeter sheets must be supported by framing and nailed at 300 mm maximum centres.

Durasheet™ must not be fixed directly to the bottom chord of roof trusses. Timber battens or metal furrings should be installed.

Figure 2 - Garage / Carport / Alfresco Linings

Fix PVC jointing strip at 200mm centres

12mm min.

Durasheet™

Timber framing

Figure 3 - Expressed Joint

12mm min.

12mm min.

Eaves lining

Timber framing

Figure 4 - Butt Joint

12mm min.

Eaves lining

Figure 4 - Butt Joint

Battens / Ceiling Joists centres

4.5mm Durasheet™ = 450mm max.

6.0mm Durasheet™ = 600mm max.

WITHIN 1200MM OF THE EXTERNAL BUILDING CORNERS

ELSEWHERE IN BUILDING

TO AS 4055 TO QLD STANDARD

MAX. BATTEN SPACING MAX. FASTENER SPACING MAX. BATTEN SPACING MAX. FASTENER SPACING

<table>
<thead>
<tr>
<th>WIND CLASSIFICATION</th>
<th>MAX. BATTEN SPACING</th>
<th>MAX. FASTENER SPACING</th>
<th>MAX. BATTEN SPACING</th>
<th>MAX. FASTENER SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>W28N</td>
<td>450</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>N2</td>
<td>W33N</td>
<td>350</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>N3/C1</td>
<td>W41N and C</td>
<td>300</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>N4/C2</td>
<td>W50N and C</td>
<td>250</td>
<td>250</td>
<td>350</td>
</tr>
</tbody>
</table>
Exterior Cladding

Framing

- Framing must be constructed to comply with the Building Code of Australia.
- The framing must be set to a true plane to ensure a straight finish to the wall.
- Studs must be spaced at a maximum of: 450 mm centres for 4.5 mm Durasheet™, 600 mm centres for 6.0 mm Durasheet™.
- Noggings must be spaced at a maximum of 1200 mm centres. For horizontal sheet fixing noggings must support the sheet joints.
- Durasheet™ cladding must not be joined off the framing.

Timber Framing

Timber framing must comply with AS 1684.2 & .3 -1999 National Timber Framing Code.

Durasheet™ must not be fixed to wet framing. It is strongly recommended that kiln dried timber is used for framing.

If sheets are fixed to ‘wet’ framing problems may occur at a later date due to excessive timber shrinkage.

Metal Framing

Metal framing must comply with AS 3623 - 1993 Domestic Metal Framing.

Durasheet™ may be fixed directly to lightweight metal framing. The metal framing must not exceed 1.6 mm in thickness.

If Durasheet™ is used with rigid steel framing, it must be battened out with either timber or lightweight steel battens prior to fixing.

Timber battens must have a minimum thickness of 40 mm to allow adequate nail penetration. Battens supporting sheet joints must have a minimum face width of 45 mm.

Sheet Layout for Cladding

Information in this publication is satisfactory for low-rise (up to two story) domestic and light commercial buildings in non-cyclonic regions.

6.0 mm Durasheet™ cladding may be fixed vertically or horizontally. However most exterior cladding is installed vertically. If horizontal joints are used then adequate flashing must be fitted to prevent ingress of water, see Figure 5.

Wall Abutment

Control Joints must be employed when an addition is constructed onto an existing building or when a masonry wall adjoins a timber or steel framed construction.

Control Joints should be constructed using 9 mm diameter backing rod and polyurethane sealant on abutment to existing masonry walls.

Notes:
- Framing must support all sheet joints.
- When sheets are fixed more than one sheet high, vertical joints should be staggered by at least one stud (600mm typical).
- Durasheet™ is to be fixed along all sheet edges over studs at 200 mm maximum fixings centres.
- Do not place fixings closer than 12mm from sheet edges, or closer than 50mm from sheet corners.

Figure 5 - Horizontal Joint Detail

Figure 6
Sheet Joints

Figure 7 - Sheet Joint Light Weight Steel Framing

- 6.0 mm Durasheet™
- 12mm min
- PVC sheet holder
- No 8 x 20mm self embedding head screw
- Drive flush with sheet face
- Vapour Permeable Sarking
- Typical light weight steel wall stud

Figure 8 - Internal Corners PVC Sheet Joinery

- Timber Framing
- Sarking
- Internal PVC Corner Moulding
- 6.00 mm Durasheet™

Figure 9 - External Corners PVC Sheet Joiners

- External PVC Corner Moulding
- 6.00 mm Durasheet™
- Timber Framing

Ground Clearance

Durasheet™ must not be used in situations where it will be below ground or where it will be buried in the ground.

A minimum of 100 mm must be maintained from the bottom edge of the sheet to the ground, see Figure 10.

Figure 10 - Ground Clearance

- Sarking
- Timber Framing
- 6.0 mm Durasheet™
- Dampcourse
- 50 mm Sheet Overhang
- 100 mm min.
Bracing detail for cyclone regions is available from your local BGC office.

Figure 11 - Type A Bracing - Timber

- Use Min 6.0mm thick Duraliner™, Durasheet™ or Duratex™.
- Fix cladding with ø2.8 x 40mm (Or equivalent) nails as shown.
- Brace capacity=2.0kN/m.
- Minimum brace length=900mm.
- Fix bottom plate to floor frame below as follows:
 - 2N° 75xØ3.15 nails to joists below at 600 max centres for plates up to 38mm thick.
 - 2N° 90xØ3.15 nails to joists below at 600 max centres for plates up to 38mm thick.
- Fix bottom plate to concrete slab below as follows:
 - 1N° 75mm masonry nail (Hand driven at slab edge), screw or bolt at 1200 max centres.
- Alternatively, fix wall frame as per AS1684.
- 2700mm max wall height. Capacity of walls greater than 2700mm decreases proportionally with height increase.

Figure 12 - Type A Bracing - Steel

- Use Min 6.0mm thick Duraliner™, Durasheet™ or Duratex™.
- Fix cladding with N° 9 Fibre Teks (or equivalent) as shown.
- Brace capacity=2.0kN/m.
- Minimum brace length=900mm.
- Fix bottom plate to floor frame below as follows:
 - 1N° M10 bolt at each end and intermediately at 1200 max centres.
- Fix bottom plate to concrete slab below as follows:
 - 1N° M10 Medium duty anchor at each end and intermediately at 1200 max centres. Washer may be required to suit stud framing.
- Alternatively, fix wall frame as per nash standard.
- 2700mm max wall height. Capacity of walls greater than 2700mm decreases proportionally with height increase.
Bracing

Figure 13 - Type B Bracing - Timber

- Framing to relevant standard
- Fibre Cement cladding fixed to one face only
- Fixing as noted
 - Use Min 6.0mm thick Duraliner™, Durasheet™ or Duratex™.
 - Fix cladding with ø2.8 x 40mm (or equivalent) nails as shown.
 - Brace capacity=4.0kN/m.
 - Minimum brace length=900mm.
 - Fix bottom plate to floor frame below as follows:
 - 1N M10 bolt at each end and intermediately at 1200 max centres.
 - 1N M10 Medium duty anchor at each end and intermediately at 1200 max centres.
 - Alternatively, fix wall frame as per AS1684.
 - 2700mm max wall height. Capacity of walls greater than 2700mm decreases proportionally with height increase.

Figure 14 - Type B Bracing - Steel

- Framing to relevant standard
- Fibre Cement cladding fixed to one face only
- Fixing as noted
 - Use Min 6.0mm thick Duraliner™, Durasheet™ or Duratex™.
 - Fix cladding with Nº 9 Fibre Teks (or equivalent) as shown.
 - Brace capacity=4.0kN/m.
 - Minimum brace length=900mm.
 - Fix bottom plate to floor frame below as follows:
 - 1N M10 bolt at each end and intermediately at 1200 max centres.
 - Fix bottom plate to concrete slab below as follows:
 - 1N M10 Medium duty anchor at each end and intermediately at 1200 max centres.
 - Washer may be required to suit stud framing.
 - Alternatively, fix wall frame as per nash standard.
 - 2700mm max wall height. Capacity of walls greater than 2700mm decreases proportionally with height increase.
BGC Durasheet™ is eminently suited for bushfire wall and eaves applications in residential and multi-residential buildings. BGC Durasheet™ 6.0mm can be used as a stand-alone product to achieve up to BAL 29 on walls when fixed directly to the frame as per the fixings instructions in this manual.

BGC Durasheet™ 4.5mm can be used as a stand-alone product to achieve up to BAL 29 in eaves when fixed directly to the frame as per the fixings instructions in this manual.

BGC Durasheet™ 6.0mm can be used as a stand-alone product to achieve up to BAL 40 in eaves when fixed directly to the frame as per the fixings instructions in this manual.

Note: All exterior walls must have Permeable Sarking beneath the Durasheet™. No adhesives are used when installing BGC Durasheet™. Nails or screws must be used.

APPLICATIONS

- **EXTERNAL WALLS**
 - Product: DURASHEET™ 6.0MM
 - BAL: 29

- **EAVES LINING**
 - Product: DURASHEET™ 4.5MM
 - BAL: 29

 - Product: DURASHEET™ 6.0MM
 - BAL: 40

Fixing & Framing 6mm Durasheet

<table>
<thead>
<tr>
<th>Framing Centres (mm max.)</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
<th>N6</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Framing and Fixing Centre Wind Loading - AS 4055 - 1992

Freeze Thaw

Durasheet™ cladding subject to freeze/thaw conditions must be painted.

Durasheet™ should not be used in situations where it will be in direct contact with snow or ice for prolonged periods.

Bushfire Wall & Eaves

BGC Durasheet™ is eminently suited for bushfire wall and eaves applications in residential and multi-residential buildings. BGC Durasheet™ 6.0mm can be used as a stand-alone product to achieve up to BAL 29 on walls when fixed directly to the frame as per the fixings instructions in this manual.

BGC Durasheet™ 4.5mm can be used as a stand-alone product to achieve up to BAL 29 in eaves when fixed directly to the frame as per the fixings instructions in this manual.

BGC Durasheet™ 6.0mm can be used as a stand-alone product to achieve up to BAL 40 in eaves when fixed directly to the frame as per the fixings instructions in this manual.

Note: All exterior walls must have Permeable Sarking beneath the Durasheet™. No adhesives are used when installing BGC Durasheet™. Nails or screws must be used.

APPLICATIONS

<table>
<thead>
<tr>
<th>EXTERNAL WALLS</th>
<th>PRODUCT</th>
<th>BAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DURASHEET™ 6.0MM</td>
<td>29</td>
</tr>
</tbody>
</table>

| EAVES LINING | DURASHEET™ 4.5MM | 29 |
| EAVES LINING | DURASHEET™ 6.0MM | 40 |
Bushfire AS3959:2009 Applications

AS3959:2009 sets out a series of Bushfire threat levels to buildings described as BAL (Bushfire Attack Levels) as follows: BAL-12.5, BAL-29, BAL-40 or BAL-FZ (Flamezone).

Painting

To enhance both the appearance and performance of Durasheet™, BGC recommend that at least two coats of a water-based paint be applied. The paint manufacturer’s recommendation on application and maintenance should be followed.

Maintenance

Durasheet™ when used in accordance with this literature requires no direct maintenance.

To guard against water penetrating the structure and damaging the framework, annual inspections of the cladding system should be carried out. Check flashing, sealant, joints and paint work.

Flashing and sealants must continue to perform their design function. Damaged sheets should be replaced as originally installed.

Warranty

We warrant that our products are free from defects caused by faulty manufacture or materials for a period of 15 years from the date of purchase. If you acquire any defective products, we will repair or replace them, supply equivalent replacement products or refund the purchase price within 30 days of receiving a valid claim subject to product inspection and confirmation of the existence of a defect by BGC. We will bear the cost of any such repair, replacement or refund.

This warranty is given by:

BGC Fibre Cement Pty Ltd
121 Bannister Rd Canningvale WA 6155
Phone 08 9334 4900 Fax 08 9334 4749

To claim under this warranty, you must provide proof of purchase as a consumer and make a written claim (including any costs of claiming) to us at the address specified above within 30 days after the defect was reasonably apparent, or if the defect was reasonably apparent prior to installation, the claim must be made prior to installation. You may not claim under this warranty for loss or damage caused by:

- faulty or incorrect installation by non-BGC installers (BGC’s installation procedures are at bgc.com.au/Fibre Cement);
- failure to comply with the Building Code of Australia or any applicable legislation, regulations approvals and standards;
- products not made or supplied by BGC;
- abnormal use of the product; or
- normal wear and tear.

The benefits available under this warranty are in addition to other rights and remedies of the consumer under the law. Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and for compensation for any other reasonably foreseeable loss or damage. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.
BGC Fibre Cement is a proud Australian owned manufacturer of fibre cement products.

BGC Fibre Cement provides builders, developers and architects with a range of design alternatives and innovative products, such as:

Innova™ range of products:
- **Duragrid™** Residential and **Duragrid™** Light Commercial
 A lightweight facade giving a modern and durable finish.
- **Duracom™**
 A compressed fibre cement facade system.
- **Duragroove™**
 A vertically grooved exterior facade panel.
- **Durascape™**
 A lightweight exterior facade base sheet with a subtle vertical shadow line.
- **Nuline™ Plus**
 A weatherboard style cladding system.
- **Stonesheet™**
 A purpose designed substrate for stone tile facades.

BGC Fibre Cement range of products:
- **Durasheet™**
 Ideal for the cladding of gables and lining of eaves. Can also be used on commercial soffits and cladding on non-impact areas.
- **Duraplank™**
 Available in Smooth, Woodgrain and Rusticated finishes, is ideal for exterior cladding of upper storey conversions or ground level extensions.
- **Duratex™**
 A base sheet used for textured coatings on exterior wall applications.
- **Duralattice™**
 Square or diamond patterned lattice, suitable for screens, pergolas and fences.
- **Compressed sheet**
 Used for domestic, commercial sheet for wet areas, flooring, partitions, exterior decking, fascia and facade cladding.
- **Duralux™**
 Suitable for exterior applications where it will be sheltered from direct weather. And interior liningboard suitable for ceilings and soffits.
- **Duraliner™**
 An interior liningboard, this is the perfect substrate for tiles and is ideal for wet areas.
- **Ceramic Tile Floor Underlay**
 An interior substrate for ceramic and slate floor tiles.
- **Vinyl and Cork Underlay**
 An interior substrate for vinyl floors.

Safe working practices - Please wear a P1 or P2 mask and safety goggles (approved to AS/NZW1337 standards) whilst cutting or installing Durasheet™. Durasheet™ can be safely handled during unloading or stacking without the use of these precautions.

Cleaning up - Always wet down your work area when cutting Durasheet™, to ensure that dust is managed.

Dispose of any vacuumed dust with care and using containment procedures.